题目
已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1.求数列列{An}的通项公式
提问时间:2020-10-09
答案
题目不大对?是下面这个么
已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1,
(一)求数列{an}、{bn}的通项公式 追加问题给我说一声 我做过一个(二)Cn=an*bn求{cn}的前n项和Sn 的
还有(三)球证bn是等比数列的
(一,二,三我表出来 你看是哪个用哪个吧
已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1,
(一.还有三)求数列{an}、{bn}的通项公式
已知{an}为等差,设首项为a1,公差为d,则:
a2=a1+d=6…………………………………………………………(1)
a5=a1+4d=18………………………………………………………(2)
(2)-(1)得到,3d=12
所以,d=4
代入(1)或者(2)有,a1=2
所以,{an}=a1+(n-1)d=2+(n-1)*4=4n-2
已知{bn}的前n项之和Tn满足:Tn+(1/2)bn=1
则,T+(1/2)b=1
因为:Tn=T+bn
所以,[T-b]+(1/2)b=1=Tn+(1/2)bn
===> (1/2)b=(3/2)bn
===> bn/b=1/3
所以数列{bn}以1/3为公比的等比数列 .(三)
而,T1=b1
所以,b1+(1/2)b1=1
那么,b1=2/3
则,{bn}=b1*q^(n-1)=(2/3)*(1/3)^(n-1)=2*(1/3)^n
2)记cn=an乘以bn,求{cn}的前n项和Sn
cn=an*bn=(4n-2)*2*(1/3)^n=(8n-4)*(1/3)^n
所以:Sn=S1+S2+S3+……+sn
=4*(1/3)+12*(1/3)^2+20*(1/3)^3+……+(8n-12)*(1/3)^(n-1)+(8n-4)*(1/3)^n
所以:
(1/3)Sn=4*(1/3)^2+12*(1/3)^2+……+(8n-12)*(1/3)^n+(8n-4)*(1/3)^(n+1)
则,Sn-(1/3)Sn=4*(1/3)+8*(1/3)^2+8*(1/3)^3+……+8*(1/3)^n-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=8*[(1/3)+(1/3)^2+(1/3)^3+……+(1/3)^n]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=8*[(1/3)*(1-(1/3)^n)]/[1-(1/3)]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=4*[1-(1/3)^n]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-4*(1/3)^n-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-(12+8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-(8n+8)*(1/3)^(n+1)
===> Sn=4-4(n+1)*(1/3)^n
已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1,
(一)求数列{an}、{bn}的通项公式 追加问题给我说一声 我做过一个(二)Cn=an*bn求{cn}的前n项和Sn 的
还有(三)球证bn是等比数列的
(一,二,三我表出来 你看是哪个用哪个吧
已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1,
(一.还有三)求数列{an}、{bn}的通项公式
已知{an}为等差,设首项为a1,公差为d,则:
a2=a1+d=6…………………………………………………………(1)
a5=a1+4d=18………………………………………………………(2)
(2)-(1)得到,3d=12
所以,d=4
代入(1)或者(2)有,a1=2
所以,{an}=a1+(n-1)d=2+(n-1)*4=4n-2
已知{bn}的前n项之和Tn满足:Tn+(1/2)bn=1
则,T+(1/2)b=1
因为:Tn=T+bn
所以,[T-b]+(1/2)b=1=Tn+(1/2)bn
===> (1/2)b=(3/2)bn
===> bn/b=1/3
所以数列{bn}以1/3为公比的等比数列 .(三)
而,T1=b1
所以,b1+(1/2)b1=1
那么,b1=2/3
则,{bn}=b1*q^(n-1)=(2/3)*(1/3)^(n-1)=2*(1/3)^n
2)记cn=an乘以bn,求{cn}的前n项和Sn
cn=an*bn=(4n-2)*2*(1/3)^n=(8n-4)*(1/3)^n
所以:Sn=S1+S2+S3+……+sn
=4*(1/3)+12*(1/3)^2+20*(1/3)^3+……+(8n-12)*(1/3)^(n-1)+(8n-4)*(1/3)^n
所以:
(1/3)Sn=4*(1/3)^2+12*(1/3)^2+……+(8n-12)*(1/3)^n+(8n-4)*(1/3)^(n+1)
则,Sn-(1/3)Sn=4*(1/3)+8*(1/3)^2+8*(1/3)^3+……+8*(1/3)^n-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=8*[(1/3)+(1/3)^2+(1/3)^3+……+(1/3)^n]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=8*[(1/3)*(1-(1/3)^n)]/[1-(1/3)]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=4*[1-(1/3)^n]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-4*(1/3)^n-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-(12+8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-(8n+8)*(1/3)^(n+1)
===> Sn=4-4(n+1)*(1/3)^n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1当太阳直射点在南回归线上时,地球公转速度( ),这时,地球在其( )
- 21.武术队,云拉器甲队比乙队少四分之一后来甲队增加了27人,这时乙队与甲队人数的比是8:9,现在多少人?
- 3加热31.6g高锰酸钾,当得到3g氧气时,剩余固体的成分是( ) A.K2MnO4和MnO2 B.KMnO4和MnO2 C.KMnO4、K2MnO4和MnO2 D.KMnO4和K2MnO4
- 4Mum,where is my coat的意思
- 5已知x,y,z为实数,且xy/x+y=1,yz/y+z=2,zx/z+x=3,求x的值
- 6过氧化氢见光分解的方程式
- 7x乘0.9减215等于x乘0.8加125这个方程怎么解
- 8沪西一百店有一自动扶梯,某顾客沿开动(上行)的自动扶梯走上楼时,数得走了N1级;当他以同样的速度(相对电梯)沿开动(上行)的自动扶梯走下楼时,数得走了N2级,则自动扶梯静止
- 9写出下面字的古义与今义 始,古义( ) 今义( )
- 10作者在叙述和描写中间,插入了一些抒情和议论,有什么作用?
热门考点