当前位置: > 已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1.求数列列{An}的通项公式...
题目
已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1.求数列列{An}的通项公式

提问时间:2020-10-09

答案
题目不大对?是下面这个么
已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1,
(一)求数列{an}、{bn}的通项公式 追加问题给我说一声 我做过一个(二)Cn=an*bn求{cn}的前n项和Sn 的
还有(三)球证bn是等比数列的
(一,二,三我表出来 你看是哪个用哪个吧
已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1,
(一.还有三)求数列{an}、{bn}的通项公式
已知{an}为等差,设首项为a1,公差为d,则:
a2=a1+d=6…………………………………………………………(1)
a5=a1+4d=18………………………………………………………(2)
(2)-(1)得到,3d=12
所以,d=4
代入(1)或者(2)有,a1=2
所以,{an}=a1+(n-1)d=2+(n-1)*4=4n-2
已知{bn}的前n项之和Tn满足:Tn+(1/2)bn=1
则,T+(1/2)b=1
因为:Tn=T+bn
所以,[T-b]+(1/2)b=1=Tn+(1/2)bn
===> (1/2)b=(3/2)bn
===> bn/b=1/3
所以数列{bn}以1/3为公比的等比数列 .(三)
而,T1=b1
所以,b1+(1/2)b1=1
那么,b1=2/3
则,{bn}=b1*q^(n-1)=(2/3)*(1/3)^(n-1)=2*(1/3)^n
2)记cn=an乘以bn,求{cn}的前n项和Sn
cn=an*bn=(4n-2)*2*(1/3)^n=(8n-4)*(1/3)^n
所以:Sn=S1+S2+S3+……+sn
=4*(1/3)+12*(1/3)^2+20*(1/3)^3+……+(8n-12)*(1/3)^(n-1)+(8n-4)*(1/3)^n
所以:
(1/3)Sn=4*(1/3)^2+12*(1/3)^2+……+(8n-12)*(1/3)^n+(8n-4)*(1/3)^(n+1)
则,Sn-(1/3)Sn=4*(1/3)+8*(1/3)^2+8*(1/3)^3+……+8*(1/3)^n-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=8*[(1/3)+(1/3)^2+(1/3)^3+……+(1/3)^n]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=8*[(1/3)*(1-(1/3)^n)]/[1-(1/3)]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=4*[1-(1/3)^n]-(4/3)-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-4*(1/3)^n-(8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-(12+8n-4)*(1/3)^(n+1)
===> (2/3)Sn=(8/3)-(8n+8)*(1/3)^(n+1)
===> Sn=4-4(n+1)*(1/3)^n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.