当前位置: > 一道用几何方法证明的代数题,...
题目
一道用几何方法证明的代数题,
已知a、b均为小于1的正数,证明不等式:(√a²+b²)+(√(1-a) ²+b²)+(√a²+(1-b) ²)+(√(1-a) ²+(1-b) ²) ≥2√2
有人和我说用一个边长是1的正方形,和四个直角三角形,直角边分别是a,b;(1-a),b;a,(1-b);(1-a),(1-b).

提问时间:2020-10-09

答案
你那个有人说的很对呀!
边长是1的正方形,在一顶点出发的两相邻边取线段长分别a,b,得到第一个直角三角形,剩下的三个也有了.
要证的不等式即是说:正方形的内接四边形,面积为正方形的一半时时,内接四边形边长之和大于等于正方形的两对角线长之和.
我说的这个几何结论还要更广泛一些.当你画出图之后会发现很简单的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.