当前位置: > 已知抛物线y=ax²+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0.以下结论...
题目
已知抛物线y=ax²+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0.以下结论
❶a+b>0;❷a+c>0;❸﹣a+b+c>0;❹b²-2ac>5a²,其中正确的是( )并注明理由.谢谢!

提问时间:2020-10-09

答案
a - b + c = 0.(1)
4a + 2b + c > 0.(2)
a < 0 .(3)
(2) - (1) 3a + 3b > 0 .a + b > 0 ,b > 0
a + c = b > 0
- a + b + c = (a - b + c) - 2a + 2b = 2( - a + b) > 0
(b² - 2ac) - 5a² = b² - 2a(b - a) - 5a² = (a + b)(b - 3a) > 0
以上四式都成立!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.