题目
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C( -1,0).将矩形OABC绕原点顺时针旋转90°
得到矩形OA'B'C'.设直线BB'与x轴交于点M,与y轴交于点N,抛物线经过点C、M、N.解答下列问题:
(1)设直线BB’表示的函数解析式为y=mx+n,求m,n
(2)求抛物线表示的二次函数的解析式
(3)在抛物线上求出使S△PB’C’=S矩形OABC的所有点P的坐标
得到矩形OA'B'C'.设直线BB'与x轴交于点M,与y轴交于点N,抛物线经过点C、M、N.解答下列问题:
(1)设直线BB’表示的函数解析式为y=mx+n,求m,n
(2)求抛物线表示的二次函数的解析式
(3)在抛物线上求出使S△PB’C’=S矩形OABC的所有点P的坐标
提问时间:2020-10-08
答案
由题知点B(-1,3),绕点O顺时针旋转90°后,则:
A'(3,0),B'(3,1),C'(0,1)
(1)、将B(-1,3)和B'(3,1)带入y=mx+n得:
3=-m+n ——①
1=3m+n ——②,
①②联立解得m=-1/2,n=5/2
(2),设抛物线解析式为:y=ax^2+bx+c,其过3点C(-1,0),M(5,0),N(0,5/2)
带入得:
0=a-b+c————③
0=25a+5b+c——④
5/2=c ————⑤
③④⑤联立解得:a=-1/2,b=2,c=5/2
所以解析式为y=-x²/2+2x+5/2
(3)过点P,做PQ⊥B'C'于Q,则:
S矩形OABC=OA*OC=3*1=3
SΔPB'C'=1/2*B'C'*PQ=3/2*PQ
所以只需PQ=6就可以了.
由于开口向下,顶点到直线B'C'距离为7/2<6,所以只有两点符合题意.
此时y=-5,解得x1=2+√19,x2=2-√19
所以满足条件的所有P点的坐标有2个,分别为(2+√19,-5),(2-√19,-5).
A'(3,0),B'(3,1),C'(0,1)
(1)、将B(-1,3)和B'(3,1)带入y=mx+n得:
3=-m+n ——①
1=3m+n ——②,
①②联立解得m=-1/2,n=5/2
(2),设抛物线解析式为:y=ax^2+bx+c,其过3点C(-1,0),M(5,0),N(0,5/2)
带入得:
0=a-b+c————③
0=25a+5b+c——④
5/2=c ————⑤
③④⑤联立解得:a=-1/2,b=2,c=5/2
所以解析式为y=-x²/2+2x+5/2
(3)过点P,做PQ⊥B'C'于Q,则:
S矩形OABC=OA*OC=3*1=3
SΔPB'C'=1/2*B'C'*PQ=3/2*PQ
所以只需PQ=6就可以了.
由于开口向下,顶点到直线B'C'距离为7/2<6,所以只有两点符合题意.
此时y=-5,解得x1=2+√19,x2=2-√19
所以满足条件的所有P点的坐标有2个,分别为(2+√19,-5),(2-√19,-5).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1you did very well in your homework.you have made mistakes in it.
- 2到一角两边距离相等的点在这个角平分线上的否命题
- 3客车每小时行60千米,货车每小时行50千米.两车同时从两地相对开出,8小时相遇,两地相距多少千米?一次比赛,六年级80人获一、二、三等奖
- 41.下列各组句子中加点词语的意义相同的一项是( )
- 5the little boy is learning to talk 反义疑问句
- 6小苏打和碳酸氢钠的反应是吸热反应还是放热反应?
- 7一般将来时练习题及答案
- 8若a,b为非零自然数,且a的20%与b的1.2倍相等,则a,b的最小公倍数是?当a-2/3b=16时,a与b的差是?
- 9巧克力的英文怎么读
- 10波的平衡位置是什么