当前位置: > 已知x1、x2是关于x的方程x²-ax+a²-a+1/4=0的两个实数根,那么(x1x2)/(x1+x2)的最小值是...
题目
已知x1、x2是关于x的方程x²-ax+a²-a+1/4=0的两个实数根,那么(x1x2)/(x1+x2)的最小值是

提问时间:2020-10-08

答案
由题意可知:Δ=(-a)²-4(a²-a+1/4)=4a-1≥0
即得:a≥1/4
由韦达定理有:x1+x2=a,x1*x2=a²-a+ 1/4
那么:(x1x2)/(x1+x2)
=(a²-a+ 1/4)/a
=a - 1 + 1/(4a)
=a+ 1/(4a) -1
由均值定理得:a+ 1/(4a)≥2根号[a*1/(4a)]=1 (当且仅当a=1/(4a)即a=1/2时取等号)
所以当a=1/2时,a+ 1/(4a)有最小值为1,此时对应(x1x2)/(x1+x2)的最小值为0.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.