当前位置: > 已知abc∈R+,a+b+c=1,求使不等式根号下(3a+2)+根号下(3b+2)+根号下(3c+2)小于等于6 证明...
题目
已知abc∈R+,a+b+c=1,求使不等式根号下(3a+2)+根号下(3b+2)+根号下(3c+2)小于等于6 证明

提问时间:2020-10-08

答案
由于abc∈R+,a+b+c=1,由均值不等式的算术平均数小于平方平均数可知
[√(3a+2)+√(3b+2)+√(3c+2)]/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.