当前位置: > 用数列极限的定义证明lim n^(1/n)=1...
题目
用数列极限的定义证明lim n^(1/n)=1
lim n^(1/n)=1
(n→+oo)

提问时间:2020-10-08

答案
因为(n)^1/n>1,令(n)^1/n=1+b,
则n=〖(1+b)〗^n=1+nb+[n(n-1)/2]b^2+…(二项式展开)
所以当n>3时,
n>1+[n(n-1)/2]b^2,从而可得b
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.