当前位置: > 直线ax+by=1 与圆x²﹢y²=1相切,若A﹙0,1∕b﹚ B﹙2∕a,o﹚则线段AB的最小值为...
题目
直线ax+by=1 与圆x²﹢y²=1相切,若A﹙0,1∕b﹚ B﹙2∕a,o﹚则线段AB的最小值为

提问时间:2020-10-08

答案
满足相切的条件为 a^2+b^2=1
令原点为O,C(2/a,1/b)
不难得到AB = OC
注意到C到直线ax+by=1的距离为2
而直线ax+by=1到原点的距离为1
因此C到原点的最近距离为2+1=3,成立条件为O,切点,C三点一线
因此最小值为3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.