当前位置: > 已知实数a>b,ab=1,则(a²+b²)/(a-b)的最小值...
题目
已知实数a>b,ab=1,则(a²+b²)/(a-b)的最小值

提问时间:2020-10-08

答案
已知实数a>b,ab=1,
则(a²+b²)/(a-b)=(a²+b²-2ab+2ab)/(a-b)
=[(a-b)²+2ab)]/(a-b)
=a-b+2/(a-b)≥2√2
当且仅当a-b=2/(a-b)时取等号
(a-b)²=2---------(1)
ab=1-------(2)
由(1)(2)联立解得
a=(√6+√2)/2
b=(√6-√2)/2
即当a=(√6+√2)/2、b=(√6-√2)/2时
(a²+b²)/(a-b)的最小值为2√2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.