当前位置: > lim(n—无穷大)n!/2×5×8×…×(3n-1)...
题目
lim(n—无穷大)n!/2×5×8×…×(3n-1)
如题,

提问时间:2020-10-08

答案
=lim(n—无穷大) [(1/2)·(2/5)·(3/8)·……·( n/(3n-1) ) ]
一方面,i/(3i-1) ≤ 1/2,(i为正整数)
则 (1/2)·(2/5)·(3/8)·……·( n/(3n-1) ) 1/3,
则 (1/2)·(2/5)·(3/8)·……·( n/(3n-1) ) >(1/3)^n
而lim(n—无穷大) (1/3)^n =0.
因此根据夹逼法则,原极限=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.