当前位置: > 向量a=(cosx+2sinx,sinx)向量b=(cosx-sinx,2cosx) f(x)=向量a*向量b 求f(x)的单调区间...
题目
向量a=(cosx+2sinx,sinx)向量b=(cosx-sinx,2cosx) f(x)=向量a*向量b 求f(x)的单调区间

提问时间:2020-10-08

答案
a=(cosx+2sinx,sinx),b=(cosx-sinx,2cosx)
f(x)=a·b=(cosx+2sinx)(cosx-sinx)+2sinx*cosx
=(cosx)^2+sinxcosx-2(sinx)^2+2sinxcosx
=(cosx)^2-2(sinx)^2+3sinxcosx
=(1+cos2x)/2-2(1-cos2x)/2+(3/2)sin2x
=-1/2-(3/2)cos2x+(3/2)sin2x
=-1/2+(3√2/2)[√2/2)sin2x-(√2/2)cos2x]
=-1/2+(3√2/2)sin(2x-π/4)
函数sinx在-π/2+2kπ=所以此函数的递增区间满足-π/8+kπ=-π/8+kπ=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.