题目
△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,
1,求证:BC=DC.2若AB=5,AC=4,求tan∠DCE的值
1,求证:BC=DC.2若AB=5,AC=4,求tan∠DCE的值
提问时间:2020-10-08
答案
且AE⊥CE(疑似),按这个来做
证明:
1)因为AB是直径,
所以∠BAC+∠B=90,
因为AE⊥CE
所以∠CAE+∠ECA=90,
因为EC与圆相切
所以∠ECA=∠B(弦切角定理)
所以∠CAE=∠BAC
所以BC=CD(在同圆中,相等的圆周角所对的弦相等)
2)因为EC与圆相切
所以∠ECD=∠CAD(弦切角定理)
所以tan∠DCE=tan∠CAD=BC/AC
在直角三角形ABC中,BC=3
所以tan∠DCE=tan∠CAD=BC/AC=3/4
证明:
1)因为AB是直径,
所以∠BAC+∠B=90,
因为AE⊥CE
所以∠CAE+∠ECA=90,
因为EC与圆相切
所以∠ECA=∠B(弦切角定理)
所以∠CAE=∠BAC
所以BC=CD(在同圆中,相等的圆周角所对的弦相等)
2)因为EC与圆相切
所以∠ECD=∠CAD(弦切角定理)
所以tan∠DCE=tan∠CAD=BC/AC
在直角三角形ABC中,BC=3
所以tan∠DCE=tan∠CAD=BC/AC=3/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1ax ≡ 1 (mod b)与ax+by=gcd(a,b)有何关系?
- 2四个连续奇数的积是945,这四个数中最小的是_,最大的是_.
- 3五年级上册口算天天练46页答案
- 4背英语单词的法有哪些
- 5同余的性质证明
- 6用春雨 山峦 小溪 写比喻修词手法写一段话
- 7已知数列(an)满足an=1 2(an+1)=an+3 (n属于N*)求通项公式 用构造法 并留下 构造法的变形公式
- 8数a、b、c在数轴上的位置如图所示,化简式子:|a-b|+|a-c|.
- 9我要办题目叫《溶液与化学》的手抄报,请大家提供一些相关的素材,急用,
- 10i was watching tv while my brother was playing computer games