当前位置: > 由点P(3,2)引圆x2+y2=4的两条切线PA,PB,A、B为切点,求直线AB的方程...
题目
由点P(3,2)引圆x2+y2=4的两条切线PA,PB,A、B为切点,求直线AB的方程

提问时间:2020-10-07

答案
设 A(x1,y1),B(x2,y2)
则过切点A的切线方程为L1:x1•x+y1•y=4
过切点B的切线方程为L2:x2•x+y2•y=4
因为L1,L2都过P(3,2)
即 3x1+2y1=4
3x2+2y2=4
从而 AB的方程为 3x+2y=4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.