当前位置: > 求函数Y=2sin^2x+2√3sinxcosx-2的周期,最大值和最小值...
题目
求函数Y=2sin^2x+2√3sinxcosx-2的周期,最大值和最小值

提问时间:2020-10-07

答案
先化简
2√3sinxcosx=√3sin2x
2sin^2 x= -(1-2sin^2 x)+1= -cos2x+1
所以y=√3sin2x-cos2x-1
=2(sin2xcos30-cos2xsin30)-1
=2sin(2x-30)-1
所以周期t=pie,最大值为1,最小值为-3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.