题目
证明级数∑(n=1到∞)(-1)^(n-1)*sin(π∕(n+1))是绝对收敛
提问时间:2020-10-07
答案
显然级数为莱布尼茨级数,由于通项绝对值趋于0,故收敛
而∑(n=1到∞)sin(π∕(n+1))的通项sin(π/(n+1))~π/(n+1)且∑(n=1到∞)π∕(n+1)发散,
故原级数条件收敛
按照你改正后的那就太容易啦
证明级数∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))是绝对收敛
显然级数证明级数∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))是绝对收敛收敛(莱布尼茨判别法)
证明级数∑(n=1到∞)sin(π∕(n+1))/π^n收敛即可
由于∑(n=1到∞)sin(π∕(n+1))/π^ninf)1/π^n=1/(π-1)为有限数,故有比较判别法知
级数∑(n=1到∞)sin(π∕(n+1))/π^n收敛
故原级数绝对收敛
而∑(n=1到∞)sin(π∕(n+1))的通项sin(π/(n+1))~π/(n+1)且∑(n=1到∞)π∕(n+1)发散,
故原级数条件收敛
按照你改正后的那就太容易啦
证明级数∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))是绝对收敛
显然级数证明级数∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))是绝对收敛收敛(莱布尼茨判别法)
证明级数∑(n=1到∞)sin(π∕(n+1))/π^n收敛即可
由于∑(n=1到∞)sin(π∕(n+1))/π^ninf)1/π^n=1/(π-1)为有限数,故有比较判别法知
级数∑(n=1到∞)sin(π∕(n+1))/π^n收敛
故原级数绝对收敛
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1求lim(x→0)(1+2x)^1/sinx值,
- 2物理,测定小灯泡电功率的实验中要注意哪些问题?(列举的越多越好)
- 3英语翻译
- 4函数Y=(二分之一)的根号下-X?+X+2次幂的单调增区间是?
- 5已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)图象上点P(1,f(1))的切线方程为y=3x+1,且函数y=f(x)在x=-2时有极值,求f(x).
- 61..运输队要运送一批货送物共480吨,头3天共运了96吨,照这样计算,运完这批货物共需要多少天?(用比例解) 2.. 运输队要运输一批货物,如果每天运30吨,16天可运完.如果每天运40吨
- 7此题为:“已知ab²c³d(四次方)e(五次方)<0,下列判断正确的是( )
- 8∫|sinx|dx积分怎么求
- 9小明家养了若干只鸡和兔,已知所有的鸡和兔的头与脚的数量比是2:5.鸡和兔的数量比是_.
- 10666+987*654分之987*655-321 怎么简便运算,还有每一步的意思也要