当前位置: > 验证函数f(x)=x-x^3在区间[0,1]上满足罗尔定理的条件,并求出满足定理条件的ξ值...
题目
验证函数f(x)=x-x^3在区间[0,1]上满足罗尔定理的条件,并求出满足定理条件的ξ值

提问时间:2020-10-07

答案
f(x)=x-x^3在区间(0,1)上是连续的,而x→0+时limx-x^3=0=f(0);x→1-时limx-x^3=0=f(1),所以函数f(x)=x-x^3在区间[0,1]上连续,.又因为多项式是可导的(这是算是一个公理吧),所以函数f(x)=x-x^3在区间[0,1]上连...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.