当前位置: > 高数 请教一道关于多元复合函数微分的证明题...
题目
高数 请教一道关于多元复合函数微分的证明题
可微函数f(x,y,z)满足方程:xfx’+yfy’+zfz’=nf(x,y,z)
证明:f(x,y,z)是n次齐次函数即:f(tx,ty,tz)=t^n f(x,y,z).
疑问一 ftx’、fty’ 、ftz’是否分别表示为函数f(tx,ty,tz)对tx,ty,tz所求的偏导数?
疑问二 一元的 x,y,z换元变成包含两个变量的tx,ty,tz对此欧拉齐次方程的等式没有影响吗?为什么?

提问时间:2020-10-06

答案
xfx’+yfy’+zfz’=nf(x,y,z) t(xftx’+yfty’+zftz’)=nf(tx,ty,tz)df(tx,ty,tz)/dt=xftx’+yfty’+zftz'=[nf(tx,ty,tz)]/tdf/f=ndt/tf(tx,ty,tz)=Ct^n 当t=1时 f(x,y,z)=C即 f(tx,ty,tz)=t^n f(x,y,z)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.