当前位置: > 选修4-5:不等式选讲 设a,b,c为不全相等的正数,证明:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)...
题目
选修4-5:不等式选讲
设a,b,c为不全相等的正数,证明:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)

提问时间:2020-10-06

答案
证明:2(a3+b3+c3)-[a2(b+c)+b2(a+c)+c2(a+b)]
=(a3-a2b)+(a3-a2c)+(b3-b2a)+(b3-b2c)+(c3-c2a)+(c3-c2b)
=a2(a-b)+a2(a-c)+b2(b-a)+b2(b-c)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(a-c)2(a+c)+(b-c)2(b+c)
∵a,b,c为不全相等的正数,
∴(a-b)2(a+b)+(a-c)2(a+c)+(b-c)2(b+c)>0
∴2(a3+b3+c3)-[a2(b+c)+b2(a+c)+c2(a+b)]>0
∴2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.