当前位置: > 设函数f(x)=x^2+bx+c ,其中b,c 是某范围内的随机数,分别在下列条件下,求事件A “ 且f(1)≤5且f(0)≤3 ”发生的概率....
题目
设函数f(x)=x^2+bx+c ,其中b,c 是某范围内的随机数,分别在下列条件下,求事件A “ 且f(1)≤5且f(0)≤3 ”发生的概率.
(1) 若随机数b,c属于{1,2,3,4} ;
请列出所有可能出现的结果

提问时间:2020-10-06

答案
由题意可得到b+c≤4和c≤3,在一个坐标系中画图(不好意思,我这边画图不方便),将b+c=4和c=3两条直线画出,在条件给出的范围内算出符合条件的范围即可.
如(1) 若随机数b,c属于{1,2,3,4} ,则,其实共有16种情况,画图知符合条件的有6组,那么概率就是6/16,情况是(b,c)=(3,1) (2,2)(1,3)(2,1)(1,2)(1,1),共6种;
如果是连续的范围,如(1,4),那么就算出占有面积的比值,此处总面积是16,符合条件的面积
大小是一个三角形的面积(1/2)*3*3=4.5,概率就是4.5/16.
这种叫做几何型概率,也是一种古典型概率,主要就是画图.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.