当前位置: > 已知函数f(x)=log a (mx-1)/(1-x) (a>0,a≠1,m≠1)是奇函数....
题目
已知函数f(x)=log a (mx-1)/(1-x) (a>0,a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)当a>1时,判断函数f(x)在(1,+无穷)上的单调性,并给出证明.

提问时间:2020-10-06

答案
(1)f(-x)=loga#[(-mx-1)/(1+x)]=-f(x)=loga#[(1-x)/(mx-1)]=loga#[(x-1)/(1-mx)],故m=-1
(2)f(x)=loga#[(x+1)/(x-1)],(x+1)/(x-1)>0,即x>1或x<-1.在x>1时为减函数,证明如下:
当a>1时,设1=loga#[(x2+1)(x1-1)/(x1+1)(x2-1)],因[(x2+1)(x1-1)/(x1+1)(x2-1)]-1=2(x1-x2)/(x1+1)(x2-1)<0
即(x2+1)(x1-1)/(x1+1)(x2-1)<1,故f(x2)-f(x1)1时f(x)是减函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.