题目
函数y=f(x)是定义在R上的偶函数,且对任意实数x,都有f(x+1)=f(x-1)成立,已知当x属于【1,2】时
f(x)=log以a为底x的对数
(1)求x∈【-1,1】时,函数f(x)的表达式
(2)求x∈【2k-1,2k+1】(k∈Z)时,函数f(x)的解析式
(3)若函数f(x)的最大值为(1/2),在区间【-1,3】上,解关于x的不等式f(x)>(1/4)
f(x)=log以a为底x的对数
(1)求x∈【-1,1】时,函数f(x)的表达式
(2)求x∈【2k-1,2k+1】(k∈Z)时,函数f(x)的解析式
(3)若函数f(x)的最大值为(1/2),在区间【-1,3】上,解关于x的不等式f(x)>(1/4)
提问时间:2020-10-05
答案
对任意实数x,都有f(x+1)=f(x-1),
∴f(x+2)=f(x),
∴2是f(x)的周期.
x∈[1,2]时f(x)=logx,
(1)x∈[-1,0]时x+2∈[1,2],
f(x)=f(x+2)=log(x+2)=log(2-|x|),
y=f(x)是定义在R上的偶函数,
∴f(x)=f(-x)=f(|x|),
∴x∈[-1,1]时f(x)=log(2-|x|).
(2)x∈[2k-1,2k+1],k∈Z时x-2k∈[-1,1],
f(x)=f(x-2k)=log(2-|x-2k|).
(3)f(x)的最大值为1/2,
∴log2=1/2,
∴a^(1/2)=2,a=4.
在区间[-1,3]上,关于x的不等式f(x)>1/4=f(√2),
化为x∈[-1,1],2-|x|>√2;或x-2∈[-1,1],2-|x-2|>√2,
解得-(2-√2)
∴f(x+2)=f(x),
∴2是f(x)的周期.
x∈[1,2]时f(x)=logx,
(1)x∈[-1,0]时x+2∈[1,2],
f(x)=f(x+2)=log(x+2)=log(2-|x|),
y=f(x)是定义在R上的偶函数,
∴f(x)=f(-x)=f(|x|),
∴x∈[-1,1]时f(x)=log(2-|x|).
(2)x∈[2k-1,2k+1],k∈Z时x-2k∈[-1,1],
f(x)=f(x-2k)=log(2-|x-2k|).
(3)f(x)的最大值为1/2,
∴log2=1/2,
∴a^(1/2)=2,a=4.
在区间[-1,3]上,关于x的不等式f(x)>1/4=f(√2),
化为x∈[-1,1],2-|x|>√2;或x-2∈[-1,1],2-|x-2|>√2,
解得-(2-√2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1My family have a T_____ball.We often watch sports on it.
- 2(x2+x分之一)6的展开式中x3的系数为
- 3汉族对中华文化的发展作出了哪些贡献?
- 4meat grape water restaurant pear bread job watermelon 分类:可数名词:不可数名词:
- 5七月十一日的英语咋写
- 6爱国诗歌20字
- 7迅达电子专销店出售某种电子产品,进价12元/只,售价20/只.为了促销,专卖店决定凡是买10只以上的,
- 8are,there,three,people,story,the,in怎样连词成句
- 93,6,10,11,怎样运算结果等于24
- 10( )的平方是9999
热门考点