当前位置: > 已知函数f(x)=tanx,x属于(0,兀/2),若x1,x2属于(0,兀/2),x1不等于x2,试证明:1/2[f(x1)+f(x2)]>f[(x1....
题目
已知函数f(x)=tanx,x属于(0,兀/2),若x1,x2属于(0,兀/2),x1不等于x2,试证明:1/2[f(x1)+f(x2)]>f[(x1.
已知函数f(x)=tanx,x属于(0,兀/2),若x1,x2属于(0,兀/2),x1不等于x2,试证明:1/2[f(x1)+f(x2)]>f[(x1+x2)/2]

提问时间:2020-10-05

答案
把x1、x2带入f(x)=tanx
左边=1/2(tanx1+tanx2)
右边=tan[(x1+x2)/2]
利用和角公式(T(α+β))
左边减右边,比较大小.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.