当前位置: > 已知函数f(x)=tanx,x属于0到90度,若x1,x2都属于0到90度,且x1≠x2,求证:1/2{f(x1)+f(x2)}>f{(x1+x2)/2}...
题目
已知函数f(x)=tanx,x属于0到90度,若x1,x2都属于0到90度,且x1≠x2,求证:1/2{f(x1)+f(x2)}>f{(x1+x2)/2}

提问时间:2020-10-05

答案
函数f(x)=tanx在x属于0到90度时是凹的:
这是因为tanx的导数=(secx)^2
tanx的2阶导数=2tanx(secx)^2>0.
根据凹函数的定义
应该成立{f(x1)+f(x2)}/2>f{(x1+x2)/2}.
证毕.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.