题目
提问时间:2020-10-05
答案
(1)∵∠ACB=∠ADE=90°,点F为BE中点,
∴DF=
BE,CF=
BE,
∴DF=CF.
∵△ABC和△ADE是等腰直角三角形,
∴∠ABC=45°
∵BF=DF,
∴∠DBF=∠BDF,
∵∠DFE=∠ABE+∠BDF,
∴∠DFE=2∠DBF,
同理得:∠CFE=2∠CBF,
∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,
∴DF=CF,且DF⊥CF.
(2)(1)中的结论仍然成立.
证明:如图,此时点D落在AC上,延长DF交BC于点G.
∵∠ADE=∠ACB=90°,
∴DE∥BC.
∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F为BE中点,
∴EF=BF.
∴△DEF≌△GBF.
∴DE=GB,DF=GF.
∵AD=DE,
∴AD=GB,
∵AC=BC,
∴AC-AD=BC-GB,
∴DC=GC.
∵∠ACB=90°,
∴△DCG是等腰直角三角形,
∵DF=GF.
∴DF=CF,DF⊥CF.
(3)延长DF交BA于点H,
∵△ABC和△ADE是等腰直角三角形,
∴AC=BC,AD=DE.
∴∠AED=∠ABC=45°,
∵由旋转可以得出,∠CAE=∠BAD=90°,
∵AE∥BC,
∴∠AEB=∠CBE,
∴∠DEF=∠HBF.
∵F是BE的中点,
∴EF=BF,
∴△DEF≌△HBF,
∴ED=HB,
∵AC=2
∴DF=
1 |
2 |
1 |
2 |
∴DF=CF.
∵△ABC和△ADE是等腰直角三角形,
∴∠ABC=45°
∵BF=DF,
∴∠DBF=∠BDF,
∵∠DFE=∠ABE+∠BDF,
∴∠DFE=2∠DBF,
同理得:∠CFE=2∠CBF,
∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,
∴DF=CF,且DF⊥CF.
(2)(1)中的结论仍然成立.
证明:如图,此时点D落在AC上,延长DF交BC于点G.
∵∠ADE=∠ACB=90°,
∴DE∥BC.
∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F为BE中点,
∴EF=BF.
∴△DEF≌△GBF.
∴DE=GB,DF=GF.
∵AD=DE,
∴AD=GB,
∵AC=BC,
∴AC-AD=BC-GB,
∴DC=GC.
∵∠ACB=90°,
∴△DCG是等腰直角三角形,
∵DF=GF.
∴DF=CF,DF⊥CF.
(3)延长DF交BA于点H,
∵△ABC和△ADE是等腰直角三角形,
∴AC=BC,AD=DE.
∴∠AED=∠ABC=45°,
∵由旋转可以得出,∠CAE=∠BAD=90°,
∵AE∥BC,
∴∠AEB=∠CBE,
∴∠DEF=∠HBF.
∵F是BE的中点,
∴EF=BF,
∴△DEF≌△HBF,
∴ED=HB,
∵AC=2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译 1,人们染上烟瘾,最终因吸烟使自己丧命. 最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|