题目
证明一个数列极限,要用单调有界定理证明
利用单调有界定里,证明下列数列极限存在:
x1=√2 , x2=√(2+x1) , x3=√(2+x2). , xn=√(2+x(n-1))其中x后面的1,2,.n,n-1都是下标.
用单调有界定理怎么证啊?请知道的朋友帮帮我这个笨蛋吧,详细解答一下吧,谢谢!
利用单调有界定里,证明下列数列极限存在:
x1=√2 , x2=√(2+x1) , x3=√(2+x2). , xn=√(2+x(n-1))其中x后面的1,2,.n,n-1都是下标.
用单调有界定理怎么证啊?请知道的朋友帮帮我这个笨蛋吧,详细解答一下吧,谢谢!
提问时间:2020-10-05
答案
首先证明有上界,即对于任意的n,xn都小于等于某个常数C.
我们证明xn<=2,用数学归纳法证
1.x1=√2<2;
2.设xk<=2,x(k+1)=√(2+x(k))<=√(2+2)=2;
可知xn<2;
再证明xn单调递增:
刚才已经知道xn<=2,则xn=√(2+x(n-1))>=√(x(n-1)+x(n-1))=√2*x(n-1)>=
√x(n-1)*x(n-1)=x(n-1);上面的推导式的依据都是x(n-1)<=2
所以xn>=x(n-1),所以xn是单调增序列
以上就证明了xn序列单调增有上界,所以极限存在
事实上这个数列的极限就是2,计算极限可以这样算
设x为xn的极限,对式子xn=√(2+x(n-1))两边取极限有
x=√(2+x),解得x=2,可知x=2
我们证明xn<=2,用数学归纳法证
1.x1=√2<2;
2.设xk<=2,x(k+1)=√(2+x(k))<=√(2+2)=2;
可知xn<2;
再证明xn单调递增:
刚才已经知道xn<=2,则xn=√(2+x(n-1))>=√(x(n-1)+x(n-1))=√2*x(n-1)>=
√x(n-1)*x(n-1)=x(n-1);上面的推导式的依据都是x(n-1)<=2
所以xn>=x(n-1),所以xn是单调增序列
以上就证明了xn序列单调增有上界,所以极限存在
事实上这个数列的极限就是2,计算极限可以这样算
设x为xn的极限,对式子xn=√(2+x(n-1))两边取极限有
x=√(2+x),解得x=2,可知x=2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1晏子谏齐景公中晏子和景公各是什么样的人 3q!
- 2压力是F=PS还是F=G
- 3They ___ some food for a picnic.
- 4我热爱我的工作英文怎么说
- 5Tom said he was very tired and __________(lie)in bed from 7:00 to 9:00 last night.
- 610g含有杂质的CaCO3和足量的盐酸反应,产生CO20.1mol,则此样品中可能含有的杂质是( ) A.KHCO3和MgCO3 B.MgCO3和SiO2 C.K2CO3和SiO2 D.无法确定
- 7请把下列划线的从句用动词不定式来改写
- 8二次供水是什么意思?
- 9在加热条件下用二氧化锰和100毫升物质的量浓度为12L/mol的浓盐酸反应,分别得标准状况下的氯气2,24L,请计算:(1)需要消耗二氧化锰多少克?被氧化的氯气物质的量是多少?
- 10让孩子更好记住,