当前位置: > 求下列微分方程的解...
题目
求下列微分方程的解
y'+ycosx=(1/2)sin2x

提问时间:2020-10-05

答案
dy/dx+ycosx=(1/2)sin2x,令dy/dx+ycosx=0得dy/dx=-ycosx,dy/y=-cosxdx 两边积分得 lny=-sinx+C1,y=C2*e^(-sinx),用常系数变异法,y=u(x)*e^(-sinx)代入原式化简得u'(x)*e^(-sinx)=1/2*sin2x,u'(x)=1/2*sin2x*e^sinx,u(x)=∫1/2*sin2x*e^sinxdx=∫sinxcosx*e^sinxdx=∫sinx*(e^sinx)dsinx=∫sinxd(e^sinx)=sinx*e^sinx-∫(e^sinx)dsinx=sinx*e^sinx-e^sinx+C,把u(x)代入y=u(x)*e^(-sinx)得y=(sinx*e^sinx-e^sinx+C)*e^(-sinx)=sinx-1+C*e^(-sinx) 终于完了,想起来容易打起来难啊~
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.