当前位置: > 已知x>2y,xy=1,求(x²+4y²)/(x-2y)的最小值和此时x、y的值...
题目
已知x>2y,xy=1,求(x²+4y²)/(x-2y)的最小值和此时x、y的值

提问时间:2020-10-05

答案
已知x>2y,xy=1,
故设x-2y=t>0,
则(x-2y)²=t²
→x²+4y²=t²+4xy=t²+4.
∴依基本不等式得
(x²+4y²)/(x-2y)
=(t²+4)/t
=t+(4/t)
≥2√(t·4/t)
=4.
故所求最小值为:4.
此时,x-2y=4/(x-2y)且xy=1.
解得,x=1+√3,y=(-1+√3)/2:
或x=1-√3,y=-(1+√3)/2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.