当前位置: > 已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)...
题目
已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)

提问时间:2020-10-05

答案
证明:首先有1/a+1/b>=4/(a+b)(这个两边同分也可以简单得到证明)
故1/a+1/b>=4/(a+b)
1/a+1/c>=4/(a+c)
1/c+1/b>=4/(c+b)
=>2/a+2/b+2/c>=4/(a+b)+4/(b+c)+4/(a+c)
=>1/(2a)+1/(2b)+1/(2c)>1/(a+b)+1/(a+c)+1/(b+c)
当且仅当a=b=c等号成立
证毕!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.