题目
会几道回答几道!
一:试说明:当n是整数时,两个连续奇数的平方差(2n+1)²-(2n-1)²是8的倍数.
二:若m是无理数,且m,n满足mn+m+n+1=0,试问:n是有理数还是无理数?请说明你的理由.
三:某商场新进两种规格的地板砖,大小两种地板砖面积相差319cm²,已知地板砖的变长均是正整数且不大于50cm,求这两种规格的地板砖的边长分别是多少厘米?(注:地板砖均是正方形)
一:试说明:当n是整数时,两个连续奇数的平方差(2n+1)²-(2n-1)²是8的倍数.
二:若m是无理数,且m,n满足mn+m+n+1=0,试问:n是有理数还是无理数?请说明你的理由.
三:某商场新进两种规格的地板砖,大小两种地板砖面积相差319cm²,已知地板砖的变长均是正整数且不大于50cm,求这两种规格的地板砖的边长分别是多少厘米?(注:地板砖均是正方形)
提问时间:2020-10-04
答案
由(2n+1)²-(2n-1)²
=4n²+4n+1-4n²+4n-1
=8n.是8的倍数.
2.由mn+m+n+1=0,
∴(m+1)(n+1)=0,
由m是无理数,∴m+1≠0,
只有n+1=0,∴n=-1是有理数.
3.设大的边长为m,小的边长为n,
有m²-n²=319,
(m+n)(m-n)=319,
由319=11×29,(11,29都比50小)
∴m+n=29,
m-n=11,
∴m=20,n=9.
=4n²+4n+1-4n²+4n-1
=8n.是8的倍数.
2.由mn+m+n+1=0,
∴(m+1)(n+1)=0,
由m是无理数,∴m+1≠0,
只有n+1=0,∴n=-1是有理数.
3.设大的边长为m,小的边长为n,
有m²-n²=319,
(m+n)(m-n)=319,
由319=11×29,(11,29都比50小)
∴m+n=29,
m-n=11,
∴m=20,n=9.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点