当前位置: > 如图,抛物线y=-1/2x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3. (1)求抛物线的解析式. (2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点...
题目
如图,抛物线y=-
1
2
x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.

(1)求抛物线的解析式.
(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=-
b
2a

提问时间:2020-10-04

答案
(1)∵OA=2,OC=3,
∴A(-2,0),C(0,3),
∴c=3,
将A(-2,0)代入y=-
1
2
x2+bx+3得,-
1
2
×(-2)2-2b+3=0,
解得b=
1
2

可得函数解析式为y=-
1
2
x2+
1
2
x+3;
(2)存在,理由如下:
如图:连接AD,与对称轴相交于P,由于点A和点B关于对称轴对称,则即BP+DP=AP+DP,当A、P、D共线时作业帮BP+DP=AP+DP最小.
设AD所在直线的解析式为y=kx+b,
将A(-2,0),D(2,2)分别代入解析式得,
-2k+b=0
2k+b=2

解得,
k=
1
2
b=1
,故直线解析式为y=
1
2
x+1,(-2<x<2),
由于二次函数的对称轴为x=-
1
2
2×(-
1
2
)
=
1
2

则当x=
1
2
时,y=
1
2
×
1
2
+1=
5
4

故P(
1
2
5
4
).
(1)根据OC=3,可知c=3,于是得到抛物线的解析式为y=-
1
2
x2+bx+3,然后将A(-2,0)代入解析式即可求出b的值,从而得到抛物线的解析式;
(2)由于BD为定值,则△BDP的周长最小,即BP+DP最小,由于点A和点B关于对称轴对称,则即BP+DP=AP+DP,当A、P、D共线时BP+DP=AP+DP最小.

待定系数法求二次函数解析式;轴对称-最短路线问题.

本题考查了待定系数法求二次函数解析式和轴对称---最短路径问题,先假设存在P,若能解出P的坐标,则P存在;否则,P不存在.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.