当前位置: > 证明 设A使n阶方阵,A不等于O,则存在一个非零矩阵B,使得AB=O的充要条件为A的行列式为0...
题目
证明 设A使n阶方阵,A不等于O,则存在一个非零矩阵B,使得AB=O的充要条件为A的行列式为0

提问时间:2020-10-04

答案
证明:必要性.
因为 存在一个非零矩阵B,使得AB=O
所以 B的列向量都是 AX=0 的解向量
所以AX=0有非零解
所以 |A| = 0.
充分性.
因为 |A| = 0,所以 AX=0 有非零解 b1,...,bs
令 B=(b1,...,bs)
则有 AB = 0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.