当前位置: > 已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC. (1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF; (2)若点F...
题目
已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.

(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.

提问时间:2020-10-04

答案
证明:(1)∵点E是BC的中点,BC=2AD,
∴EC=BE=
1
2
BC=AD,
又∵AD∥BC,
∴四边形AECD为平行四边形,
∴AE∥DC,
∴△AOE∽△COF;
(2)连接DE,
∵AD∥BE,AD=BE,
∴四边形ABED是平行四边形,
又∠ABE=90°,
∴四边形ABED是矩形,
∴GE=GA=GB=GD=
1
2
BD=
1
2
AE,
∴E、F分别是BC、CD的中点,
∴EF、GE是△CBD的两条中位线,
∴EF=
1
2
BD=GD,GE=
1
2
CD=DF,
又GE=GD,
∴EF=GD=GE=DF,
∴四边形EFDG是菱形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.