当前位置: > 已知三角形ABC的内切圆圆O分别和BC,AC,AB切与点D,E,F,如果AF等于2,BD等于7,CE等于4...
题目
已知三角形ABC的内切圆圆O分别和BC,AC,AB切与点D,E,F,如果AF等于2,BD等于7,CE等于4
1.求三角形ABC的三边长
2.如果P为弧DF上的一点,过点P做圆O的切线,交AB于点M,交BC于点N,求三角形BMN的周长.

提问时间:2020-10-04

答案
1.由切线定理可得 BD=BF=7,DC=CE=4,AF=AE=2 C△abc=(7+4+2)×2=26
2.由切线定理可得 MF=MP,ND=NP ,所以BM+BN+MN=BF+BD=14 ,即三角形BMN的周长为14
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.