题目
证明:线段垂直平分线上的点到这条线段两个端点的距离相等.
提问时间:2020-10-03
答案
如图所示,当A,D不重合,已知,AD⊥BC,DB=CD.
求证:AB=AC,
证明:∵AD⊥BC,DB=CD.
∴AD=AD,∠ADB=∠ADC,BD=DC,
∴△ADB≌△ADC,
∴AB=AC.
当A,D重合,
D为BC的中点,则BD=DC,
故线段垂直平分线上的点到这条线段两个端点的距离相等.
求证:AB=AC,
证明:∵AD⊥BC,DB=CD.
∴AD=AD,∠ADB=∠ADC,BD=DC,
∴△ADB≌△ADC,
∴AB=AC.
当A,D重合,
D为BC的中点,则BD=DC,
故线段垂直平分线上的点到这条线段两个端点的距离相等.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点