题目
已知函数f(x)=2x,x∈R.
(1)当m取何值时方程|f(x)-2|=m有一个解?两个解?
(2)若不等式f2(x)+f(x)-m>0在R上恒成立,求m的范围.
(1)当m取何值时方程|f(x)-2|=m有一个解?两个解?
(2)若不等式f2(x)+f(x)-m>0在R上恒成立,求m的范围.
提问时间:2020-10-03
答案
(1)令g(x)=|f(x)-2|=|2x-2|=
,
方程|f(x)-2|=m有一个解,即y=g(x)与y=m有一个交点,方程|f(x)-2|=m有两个解,即y=g(x)与y=m有两个交点,
作出图象如右图所示,可得
当m=0或m≥2时,方程|f(x)-2|=m有一个解,
当0<m<2时,方程|f(x)-2|=m有两个解.
(2)不等式f2(x)+f(x)-m>0在R上恒成立,即4x+2x-m>0在R上恒成立,
即m<4x+2x在R上恒成立,即m<(4x+2x),
4x+2x=(2x+
)2-
>0,
∴m≤0,
所以m的取值范围为m≤0.
|
方程|f(x)-2|=m有一个解,即y=g(x)与y=m有一个交点,方程|f(x)-2|=m有两个解,即y=g(x)与y=m有两个交点,
作出图象如右图所示,可得
当m=0或m≥2时,方程|f(x)-2|=m有一个解,
当0<m<2时,方程|f(x)-2|=m有两个解.
(2)不等式f2(x)+f(x)-m>0在R上恒成立,即4x+2x-m>0在R上恒成立,
即m<4x+2x在R上恒成立,即m<(4x+2x),
4x+2x=(2x+
1 |
2 |
1 |
4 |
∴m≤0,
所以m的取值范围为m≤0.
(1)|f(x)-2|=m有一个解和两个解,转化成g(x)=|f(x)-2|与y=m有一个交点和两个交点问题,画出g(x)=|f(x)-2|=|2x-2|=
的图象,根据图象即可得答案,
(2)不等式f2(x)+f(x)-m>0在R上恒成立,即4x+2x-m>0在R上恒成立,利用参变量分离,转化成求4x+2x的取值范围.
|
(2)不等式f2(x)+f(x)-m>0在R上恒成立,即4x+2x-m>0在R上恒成立,利用参变量分离,转化成求4x+2x的取值范围.
函数恒成立问题;函数的零点.
本题考查了函数的零点和函数的恒成立问题,函数的零点问题经常利用函数图象转化为求交点问题,恒成立问题一般使用参变量分离法处理.属于中档题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点