当前位置: > 若f(x)=a2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是...
题目
若f(x)=a2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是

提问时间:2020-10-02

答案
偶函数要使f(x)=f(-x)在R上恒成立.
即ax^2+bx+c=a(-x)^2-bx+c恒成立
即bx=-bx恒成立.
即2bx=0恒成立.
b=0,时才能满足x取任意值时上式都成立.
所以g(x)=ax^3+cx
g(-x)=a(-x)^3-cx=-ax^3-cx=-g(x)
g(x)是奇函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.