当前位置: > 如何证明级数n^n/(n!)^2是收敛的...
题目
如何证明级数n^n/(n!)^2是收敛的

提问时间:2020-10-02

答案
只需要求后一项与前一项的比值:
为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]
=(n+1)^(n-1)/n^n
=【(n+1)/n】^n*【1/(n+1)】
lim【(n+1)/n】^n=e
lim1/(n+1)=0
所以:lim(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=0
所以该级数是收敛的
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.