当前位置: > 已知函数y=f(x)的定义域为R,且对任意a,b属于R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,...
题目
已知函数y=f(x)的定义域为R,且对任意a,b属于R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,
证明:函数y=f(x)是奇函数
令:x=y=0代入可得:f(0)=f(0)+f(0),所以f(0)=0
令y=-x代入可得:f(x-x)=f(x)+f(-x),
所以f(x)为奇函数
即f(0)=f(x)+f(-x),从而 f(x)+f(-x)=0
所以:f(-x)=-f(x)

提问时间:2020-10-02

答案
就是用代入法啊
f(0)=f(0)+f(0),就是f(0)=2f(0) 所以f(0)=0,能理解吗
令y=-x代入可得:f(x-x)=f(x)+f(-x),
x-x=0即f(x)+f(-x)=0 移项得f(-x)=-f(x)
课本上定义了满足f(-x)=-f(x) 就是奇函数 慢慢来,这种题目做多了理解的,会通的
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.