当前位置: > 求不定积分∫xe^2x*dx 求定积分∫(1,0)dx/2+√x...
题目
求不定积分∫xe^2x*dx 求定积分∫(1,0)dx/2+√x

提问时间:2020-10-02

答案
∫xe^2xdx
=1/2∫xe^2xd2x
=1/2∫xde^2x
=(1/2)xe^2x-1/2∫e^2xdx
=(1/2)xe^2x-1/4∫e^2xd2x
=(1/2)xe^2x-(1/4)e^2x+C
∫(1,0)dx/2+√x
令√x=a
x=a²
dx=2ada
x=1,a=1
x=0,a=0
原式=∫(1,0)ada/(2+a)
=∫(1,0)(2+a-2)da/(2+a)
=∫(1,0)[1-2/(2+a)]da
=∫(1,0)[1-2/(2+a)]d(2+a)
=(2+a)-2ln(2+a)(1,0)
=(3-2ln3)-(2-2ln2)
=1-2ln3+2ln2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.