当前位置: > 用数学归纳法证明1+a+a2++an=1-an+2/1-a(a≠1,nN),在验证n=1时,左边计算所得的式子是...
题目
用数学归纳法证明1+a+a2++an=1-an+2/1-a(a≠1,nN),在验证n=1时,左边计算所得的式子是

提问时间:2020-10-02

答案
是1+a+a^2+……+a^n=[1-a^(n+1)]/(1-a)吧
n=1,左边=1+a,右边=(1-a^2)/(1-a)=1+a,左=右,成立
n=k时成立,则n=k+1时
左=[1-a^(k+1)]/(1-a)+a^(k+1)=[1-a^(k+1)+a^(k+1)-a^(k+2)]/(1-a)=[1-a^(k+2)]/(1-a)=右边
所以命题对所有正整数均成立.证毕!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.