当前位置: > 已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集.若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为(  ) A.62 B.66 C.68 D.7...
题目
已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集.若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为(  )
A. 62
B. 66
C. 68
D. 74

提问时间:2020-10-01

答案
令2n+2≤100,可得 n≤49,故A是{1,2,…,49}的一个非空子集,
再由A∩B=∅,先从A中去掉形如2n+2的数,n∈N+
由2n+2≤49,可得 n≤23,49-23=26,此时,A中有26个元素.
由于A中已经去掉了4,6,8,12,16,20,22 这7个数,而它们对应的形如2n+2的数分别为10,14,18,26,34,42,46,
并且10,14,18,26,34,42,46 对应的形如2n+2的数都在集合B中.
故A中还可有以下7个特殊元素:10,14,18,26,34,42,46,
故A中元素最多时,A 中共有33个元素,对应地B中也有33个元素.
故选B.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.