题目
limx_o(tanx-x)/(x-sinx)的极限怎么求
提问时间:2020-10-01
答案
lim(x->0)(tanx-x)/(x-sinx) (0/0型,利用罗比达法则)
=lim(x->0)(sec^2x-1)/(1-cosx) (初等变换)
=lim(x->0)(1-cosx)(1+cosx)/[cosx^2x(1-cosx)] (约去1-cosx)
=lim(x->0)(1+cosx)/[cosx^2x]
=(1+1)/1=2
注意极限过程中存在的问题:
(xsinx)/(1-cosx)=x^2/(1/2*x^2) 是不成立的.
同样
tan(x)^2/(1-cosx)
=[2*tan(x)*(tan(x)^2 + 1)]/sin(x)
=[2*(tan(x)^2 + 1)^2 + 4*tan(x)^2*(tan(x)^2 + 1)]/cosx
=2 也是不成立的.
我们说lim(x->0)(sinx)/x=lim(x->0)x/x=1 是正确的,
但若是说(sinx)/x=x/x=1 那就错了.
毕竟sinx和x只是等价,并不是相等.
=lim(x->0)(sec^2x-1)/(1-cosx) (初等变换)
=lim(x->0)(1-cosx)(1+cosx)/[cosx^2x(1-cosx)] (约去1-cosx)
=lim(x->0)(1+cosx)/[cosx^2x]
=(1+1)/1=2
注意极限过程中存在的问题:
(xsinx)/(1-cosx)=x^2/(1/2*x^2) 是不成立的.
同样
tan(x)^2/(1-cosx)
=[2*tan(x)*(tan(x)^2 + 1)]/sin(x)
=[2*(tan(x)^2 + 1)^2 + 4*tan(x)^2*(tan(x)^2 + 1)]/cosx
=2 也是不成立的.
我们说lim(x->0)(sinx)/x=lim(x->0)x/x=1 是正确的,
但若是说(sinx)/x=x/x=1 那就错了.
毕竟sinx和x只是等价,并不是相等.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1在生物的生活物质中,()()()等是储存着能量的有机物?
- 2设函数f(x)=log2(ax-bx),且f(1)=1,f(2)=log212. (1)求a,b的值; (2)当x∈[1,2]时,求f(x)最大值.
- 3乙醇在氧气中燃烧的化学式是什么?
- 4A、B、C、D四种物质均含有元素X,有的还可能含有元素Y或者元素Z
- 5《三字经》里“为人子一直到宜先知的意思
- 6海水朝朝朝朝朝朝朝落,浮云长长长长长长长消什么意思还有读音
- 7在什么情况下,稀释醋酸,氢离子浓度增加?
- 8二分之一米铁丝重五分之一千克,一米铁丝重多少千克,一千克铁丝长多少米
- 9用长24cm,宽16cm的小长方形木块,拼成一个大正方形木块,拼成的大正方形边长最小是多少cm?至少要这个样小长方形木块多少块?
- 107/12-1/8+x=5/6 解方程,