题目
如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.
(1)请写出图中各对相似三角形(相似比为1除外);
(2)求BP:PQ:QR.
(1)请写出图中各对相似三角形(相似比为1除外);
(2)求BP:PQ:QR.
提问时间:2020-10-01
答案
(1)∵四边形ACED是平行四边形,
∴∠BPC=∠BRE,∠BCP=∠E,
∴△BCP∽△BER;
同理可得∠CDE=∠ACD,∠PQC=∠DQR,
∴△PCQ∽△RDQ;
∵四边形ABCD是平行四边形,
∴∠BAP=∠PCQ,
∵∠APB=∠CPQ,
∴△PCQ∽△PAB;
∵△PCQ∽△RDQ,△PCQ∽△PAB,
∴△PAB∽△RDQ.
(2)∵四边形ABCD和四边形ACED都是平行四边形,
∴BC=AD=CE,
∵AC∥DE,
∴BC:CE=BP:PR,
∴BP=PR,
∴PC是△BER的中位线,
∴BP=PR,
=
又∵PC∥DR,
∴△PCQ∽△RDQ.
又∵点R是DE中点,
∴DR=RE.
=
=
=
,
∴QR=2PQ.
又∵BP=PR=PQ+QR=3PQ,
∴BP:PQ:QR=3:1:2
∴∠BPC=∠BRE,∠BCP=∠E,
∴△BCP∽△BER;
同理可得∠CDE=∠ACD,∠PQC=∠DQR,
∴△PCQ∽△RDQ;
∵四边形ABCD是平行四边形,
∴∠BAP=∠PCQ,
∵∠APB=∠CPQ,
∴△PCQ∽△PAB;
∵△PCQ∽△RDQ,△PCQ∽△PAB,
∴△PAB∽△RDQ.
(2)∵四边形ABCD和四边形ACED都是平行四边形,
∴BC=AD=CE,
∵AC∥DE,
∴BC:CE=BP:PR,
∴BP=PR,
∴PC是△BER的中位线,
∴BP=PR,
PC |
RE |
1 |
2 |
又∵PC∥DR,
∴△PCQ∽△RDQ.
又∵点R是DE中点,
∴DR=RE.
PQ |
QR |
PC |
DR |
PC |
RE |
1 |
2 |
∴QR=2PQ.
又∵BP=PR=PQ+QR=3PQ,
∴BP:PQ:QR=3:1:2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1这样测量一滴水的体积
- 2一个长方形的长4厘米,宽3厘米,以长方形的一条边为轴旋转1周,所得到的图形体积是( )立方厘米
- 3为了保护生态环境,某山区响应国家“退耕还林”的号召,将该地区一部分耕地改为林地,改变后,林地面积和耕地面积共有210平方千米,耕地面积是林地面积的40%,求改变后林地面积和耕地面积各为多少平方千米?
- 4He came to the meeting though he was ill(同意句)
- 5若5a^3|m|+1再+(m+2)b-10是七次二项式,求字母m的值
- 6英语翻译
- 7Simon,_______(not read)in the sun
- 8请问同一溶液中物质的体积之比等于物质的量之比是吗?各溶质的物质的量浓度相同吗?
- 9求各种名人的语录,名言,精炼句子,人生总结……
- 10果园里种的苹果树比梨树的1.5倍多30棵,苹果树有420棵,梨树有多少棵?
热门考点