题目
如图所示,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠DOE之间具有怎样的数量关系,并证明你的猜想结论.
提问时间:2020-10-01
答案
∠C+∠DOE=180°.
∵AD,BE是△ABC的高(已知),
∴∠AEO=∠ADC=90°(高的意义),
∵∠DOE是△AOE的外角(三角形外角的概念),
∴∠DOE=∠OAE+∠AEO(三角形的一个外角等于不相邻的两个内角的和)
=∠OAE+90°(∠AEO=90°)
=∠OAE+∠ADC(∠ADC=90°)
∴∠C+∠DOE=∠OAE+∠C+∠ADC=90°+90°=180°.
另法:在四边形CEOD中,∠C+∠EOD+90°+90°=360°,
则∠C+∠EOD=180°.
∵AD,BE是△ABC的高(已知),
∴∠AEO=∠ADC=90°(高的意义),
∵∠DOE是△AOE的外角(三角形外角的概念),
∴∠DOE=∠OAE+∠AEO(三角形的一个外角等于不相邻的两个内角的和)
=∠OAE+90°(∠AEO=90°)
=∠OAE+∠ADC(∠ADC=90°)
∴∠C+∠DOE=∠OAE+∠C+∠ADC=90°+90°=180°.
另法:在四边形CEOD中,∠C+∠EOD+90°+90°=360°,
则∠C+∠EOD=180°.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1已知∠AOB=78°56′,∠BOC=37°48′,求∠AOC的度数
- 2求些有哲理性的英语小故事!
- 3翻译句子:
- 4look at the students( )games in the playground now.是用 are playing 还是playing
- 5天净沙秋思选取了那些富有特征性的景物有什么作用
- 6()He always ____ his friends about everything.In fact ,he has no thoughts of his own.
- 723.75克某+2价金属的氯化物(MCL2)中含有3.01*10的23次方个CL-,
- 8英语翻译
- 9给排水管道中:DN 、de、φ分别表示什么意思?有什么区别
- 10美国文学中有关“美国梦”(American Dream)的概念是怎样来的呢?
热门考点