当前位置: > (急)极限问题:x趋近于0正,求[(1+x)^(1/x)/e]^(1/x)的极限...
题目
(急)极限问题:x趋近于0正,求[(1+x)^(1/x)/e]^(1/x)的极限
x趋近于0正,求[(1+x)^(1/x)/e]^(1/x)的极限
为什么不能用 (1+x)^(1/x)=e 带入原式得到lim(e/e)^1/x
问题得到解决还能+分
我就是不知道为什么不能直接用lim(1+x)^(1/x)=e 带入原式,而要先将式子化成{1+[(1+x)^(1/x)-e]/e}^{e/[(1+x)^1/x]-e}*{[(1+x)^1/x]-e}/ex后,再将1+[(1+x)^(1/x)-e]/e看成t,用lim(1+t)^(1/t)=e 带到式子解题!
(解题过程不用给我说了,我就是想知道为什么不能这样做)
对于秦可卿说的,lim(1+x)^(1/x)=e只是极限下成立,我这就是求极限啊,
对于jinghuawangzi说得,X必须同时娶极限,但是书中将式子化成,{1+[(1+x)^(1/x)-e]/e}^{e/[(1+x)^1/x]-e}*{[(1+x)^1/x]-e}/ex后,再将1+[(1+x)^(1/x)-e]/e看成t,带到原式得lime^[(1+x)1/x]/ex 他这样做不是也没都同时娶极限么 还留个[(1+x)1/x]/ex。
对于寂寂落定 说得乘方也不能用等价无穷小,[(1+x)1/x]/ex 这不也是乘方么
大家别嫌我啰嗦,这个问题困扰了我2天了,让我怎么想也想不通,我比较笨的。
哈哈 问完同学 总算明白了 还是秦可卿说的,lim(1+x)^(1/x)=e只是极限下成立

提问时间:2020-09-30

答案
(1+x)^(1/x)=e只是极限状态下成立,
如果可以随便代的话lim(1+x)^(1/x) = (1+0)^(1/x)=1,显然错误.
x趋近于0正,lim[(1+x)^(1/x)/e]^(1/x)
=
x趋近于正无穷,lim[(1+1/x)^(x)/e]^x
=
lim[(1+1/x)^(xx) / e^x
=
lim e ^ (xxln(1+1/x) - x)
=
e ^ (lim(xxln(1+1/x) - x))
指数的极限用洛必达法则
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.