当前位置: > 设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围....
题目
设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.

提问时间:2020-09-30

答案
由f(x)在R上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a2+a+1=2(a+14)2+78>0,2a2-2a+3=2(a-12)2+52>0,且f(2a2+a+1)<f(2a2-2a+3),∴2a2+a+1>2a2-2a+3,即3a-2>0,解得a...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.