当前位置: > 设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两焦点为F1,F2,若在椭圆上存在一点P,使PF1⊥PF2,求椭圆离心率e的范围...
题目
设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两焦点为F1,F2,若在椭圆上存在一点P,使PF1⊥PF2,求椭圆离心率e的范围

提问时间:2020-09-30

答案
∠F1PF2在P处于(0,b)时最大,
假设P处于(0,b)时有PF1⊥PF2,此时2c=√2a
此时椭圆离心率e=√2/2
椭圆越椭,∠F1PF2越大,椭圆上肯定存在一点P,使得PF1⊥PF2
离心率e的取值趋向于1
所以e的取值范围为[√2/2,1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.