当前位置: > 等价无穷小的代换问题,在什么时候可以用?...
题目
等价无穷小的代换问题,在什么时候可以用?
1):lim[ln(1+x)^1/2+2sinx]/tanx x趋向0
这道题的答案是把它分成 lim[1/2ln(1+x)/tanx]+lim2sinx/tanx
然后用等价无穷小代替 变成 lim(1/2x)/x+lim2x/x = 2*1/2
2):那么lim[1/ln(1+x^2)-1/sinx^2]
为什么不可以把它分为 lim[1/ln(1+x^2)]-lim(1/sinx^2) 然后再把它们分别看成一个整体,用等价无穷小代替呢?

提问时间:2020-09-29

答案
能这样拆的,必须是拆开后极限仍然存在的.
lim[ln(1+x)^1/2+2sinx]/tanx
=lim[1/2ln(1+x)/tanx]+lim2sinx/tanx
两项仍然极限存在
但是lim[1/ln(1+x^2)-1/sinx^2]分为
lim[1/ln(1+x^2)]-lim(1/sinx^2) 两项极限均不存在!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.