题目
1.如图,在△ABC中,∠BAC=90°,∠B=22.5°,边AB的垂直平分线交BC于点D,DF⊥AC于点F,与边BC上的高AE相交于
1.如图,在△ABC中,∠BAC=90°,∠B=22.5°,边AB的垂直平分线交BC于点D,DF⊥AC于点F,与边BC上的高AE相交于点G,求证:EG=EC.
2.已知F,C是线段BE上两点,BF=CE,AB=DE,∠B=∠E,QR//BE,求证:△PQR为等腰三角形.
图 在我这儿
1.如图,在△ABC中,∠BAC=90°,∠B=22.5°,边AB的垂直平分线交BC于点D,DF⊥AC于点F,与边BC上的高AE相交于点G,求证:EG=EC.
2.已知F,C是线段BE上两点,BF=CE,AB=DE,∠B=∠E,QR//BE,求证:△PQR为等腰三角形.
图 在我这儿
提问时间:2020-09-29
答案
1、证明:
根据题意,连接AD,则
∠ADE=45°,∠EAD=90°-45°=45°
∠CAE=90°-∠BAE=45°
∴DE=AE
又∵∠DEG=∠AEC,∠GDE=90°-∠C=∠EAC
∴△DEG≌△AEC
∴EG=EC
得证
2、证明:
BF=CE
∴BC=EF
又∵∠B=∠E,AB=DE
∴△BAC≌△EDF
∴∠ACB=∠DFE
又∵QR‖BE
∴∠R=∠DFE=∠ACB=∠Q
∴QP=RP
即△PQR是等腰三角形
得证
根据题意,连接AD,则
∠ADE=45°,∠EAD=90°-45°=45°
∠CAE=90°-∠BAE=45°
∴DE=AE
又∵∠DEG=∠AEC,∠GDE=90°-∠C=∠EAC
∴△DEG≌△AEC
∴EG=EC
得证
2、证明:
BF=CE
∴BC=EF
又∵∠B=∠E,AB=DE
∴△BAC≌△EDF
∴∠ACB=∠DFE
又∵QR‖BE
∴∠R=∠DFE=∠ACB=∠Q
∴QP=RP
即△PQR是等腰三角形
得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1y=2x/x^2+3x+1求其值域~
- 2求人教版七年级语文上册所有古诗
- 3已知抛物线y=x2+(2n-1)x+n2-1(n为常数). (1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式; (2)设A是(1)所确定的抛物线上位于x轴下方、且在对称
- 4阅读伟人细胞 如果你是贾里的朋友 会怎么样劝他
- 5王之涣的《凉州词》
- 6左边上面是匕首的匕字下边是水字右边是页字请问这个字的读音是什么
- 7戴斯马丁氧化剂 (1,1,1-三乙酰氧基)-1,1-二氢-1,2-苯碘酰-3(1H)-酮 的海关编码是什么了 急
- 8如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是_.
- 9Kangaroo(袋鼠)品牌优势
- 10当x=-1 和-2时 y=1/3x^2-2 分别等于多少
热门考点