题目
怎样证明当n趋向无穷大时,(1+1/n)的n次方=e
请照顾一个FRESHMEN的智商
请照顾一个FRESHMEN的智商
提问时间:2020-09-29
答案
谁给你出的这道题?真是脑筋缺根弦!
只能证明当n趋向无穷大时,(1+1/n)的n次方存在极限,(具体证明过程在下面)而因为这个极限是个无理数,所以就用e来代替这个极限值,e=2.71828……,e是事后规定的!
附:下面证明原极限存在(用单调有界必有极限来证):
首先需要二项式定理:
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立.
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0.因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1.余下分母.于是式一化为:
(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n!(式二)
当n -> +∞时,你可以用计算机,或笔计算此值.这一数值定义为e.
补充:
将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值.
只能证明当n趋向无穷大时,(1+1/n)的n次方存在极限,(具体证明过程在下面)而因为这个极限是个无理数,所以就用e来代替这个极限值,e=2.71828……,e是事后规定的!
附:下面证明原极限存在(用单调有界必有极限来证):
首先需要二项式定理:
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立.
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0.因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1.余下分母.于是式一化为:
(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n!(式二)
当n -> +∞时,你可以用计算机,或笔计算此值.这一数值定义为e.
补充:
将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1往伤口上撒盐有什么化学原理(选择题)
- 2求 How to be a Greener Person 英语作文 快.
- 3求一道超难初三数学答案(要详细解答)
- 4比一个数的5分之2少3的数是5,求这个数.一个数的3分之1比这个数的25%多20,这个数是多少.
- 5“老师坐在教师后面听课”里面的“听课”英语怎么说?
- 6admire中的a如何发音?
- 7一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字换位置,那么得到的新两位数比原来的两位数的一半还少9,那么原来的两位数是_.
- 8一种商品现在每件120元,比原来降低了30元,降价百分之几?
- 9对于式子丨x丨+13,当x等于什么值
- 10一个高15cm,底面周长25.12cm的笔筒,要多少平方厘米的材料
热门考点
- 11-500的全体自然数中,不含数字5的数共有多少个
- 2暑假学伴四年级P18页
- 3赞叹不已的近意词是什么?
- 4有一瓶无色气体,可能含有H2S,CO2,HBr,HCl,SO2,NO2中的一种或几种,向其中加入氯水,
- 5一块长方形的操场,原来长50米,宽30米.扩建后长和宽分别增加了8米,操场扩建后面积增加了多少平方 要算
- 6英语翻译
- 7根据字义组词
- 8当K=?时,多项式7m的2次方-三分之一kmn+6n的二次方+3mn-9m的二次方+2中不含mn的项
- 9高数1-cos(sinx)怎么化简为sinx平方/2的?,函数与极限这这一节.
- 10小明和小亮到书店买一本故事书,小明的钱差4元,小亮的钱差5元,两个人的钱合起来买这本书找回三元.这本书多少元?